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LETTER TO THE EDITOR 

A particular class of Einstein spaces 

J P Constantopodos 
Section of Astrophysics-Astronomy & Mechanics, Department of Physics, University bf 
Athens, Panepistimiopolis, GR 157 83-20&0s, GreeEe 

Received 8 March 1993 

Ahslxact. A hierarchy of special solutions of the vacuum field equations of general relativity 
m dimensions n>5 is explicitly constructed from the solutions for n=4. The basic feature 
of these solutions is that they admit a non-trivial O-analysis. The meaning of this particular 
constraint and its relation to plane gravitational Waves is also dirmssed. 

An interesting class of pseudo-Riemannian spaces, the projective properties of which 
are very close to those of the spaces of constant curvature, were extensively studied in 
the early 1960s by a school of Russian Mathematicians [l-31. These spaces, are the 
V(K)-spaces which are semireducible Riemannian or pseudo-Riemannian spaces, the 
fundamental form of which can be written, in a suitably chosen coordinate system, as 

ds2=d.d+ o;a,dsz,; (1) 

ds;=gbjo dx" dx'D ( 1 4  
ds', =g,,i, dx'. dx'. (16) 

C(0) = %&") ( o d o ( p l  #bnst.(a 6.P)). (14 

Cl-1 

where 

(io, jo = 1 . . . I )  
(ie, jn = 1 . . . n,, a = 1,. . .p )  

and 

Here, the principal part of the metric do and the functions oca', are such that the adjoint 
metric [4] 

is that of a space of constant curvature K. It is worth noticing that the additional metrics 
dr', in (1) are quite arbitrary, the definition of a V(K)-space depending solely o n  the 
properties of the analysis (1) as well as on the value of the constant K. We further 
assume that I >  1 and n, > 1 and we notice that the Levi-Civita spaces for which not all 
the roots are multiple can be written in the form (1). However, a Levi-Civita space is 
not in general a V(K)-space. The characteristic geometric property of a V(K)-space is 
that through each geodesic of the space there is a totally geodesic hypersurface of 
constant cncvature K, such that the induced metric on it, in the coordinate system where 
the K-analysis (1) holds, is given by (2) [2(1967)]. 
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The analysis (1) of a V(K)-space is characteristic to the space under consideration 
and it is called the K-unuZysis of the space. Thus, any other analysis, say K*, in a 
different coordinate system implies K,=K [l]. The K-analysis is said to be maximol, if 
none of the metria dsz. is that of a V(K,)-space. Since the maximal K-analysis is unique 
up to trivial transformations [1( 1958)], the representation (1) is also unique up to trivial 
transformations. Each K-analysis is also characterized by the conjugute culltutures of 
the ds:, which are the quantities 

Ka=Alo( , )+K4, )  (a=1, . . . , p )  (3) 
where AI is the differential parameter of the first order. It can be easily proved that the 
conjugate curvatures of a V(K)-space are constants [3]. Besides, if the metric d d  (for 
some fixed value of a) admits a K.-analysis and d.$ is an additional metric in the 
aforementioned KO-analysis then the conjugate curvature of the metric d.$ is the same 
in both the K,-analysis of the metric dd and in the resulting K-analysis of the original 
V(K)-space. In particular, the constants K, give a rough measnre of how much a V(K)- 
space differs (locally) from a space of constant curvature Kof the same dimensionality. 
In fact, it can be proved that the space (1) is of constant curvature K, iff each metric 
ds: is of constant curvature K,  [ 11. This particular property of the &analysis is essential 
for our subsequent analysis. 

Although the spaces V(K)  have been exhaustively studied, at least as far as their 
local properties are concerned, to the best of our knowledge, the Einstein spaces which 
are also V(K)-spaces have not been considered. Now, using the representation (1) and 
the condition that the adjoint metric (2) is of constant curvature K, we can easily 
calculate the Ricci tensor of the arbitrary space V(K) ,  namely 

Rid,=K(n- l)gwo ( 4 4  

Rian= Rinja+K(n- i ) ~ ~ g f ~ ~ - K . ( n . -  1)gia. (46) 

(a  # P ) .  (44 

(a) (a) 

R.  . E R .  - 
W O  ,pk.-O 

Assuming that the metric ds', is that of an Einstein space which is not a space of constant 
curvature, i.e. 

Rimj,=K&- I)gioje (5) 
(a) 

we get from (4u, b, c) that (1) is the metric of an Einstein space, which is not a space 
of constant curvature because of our previous remark. Conversely, if (1) corresponds 
to a non-trivial Einstein space then from (46) we obtain condition (9, which implies 
that the metric ds2, is that of an Einstein space, for each a = 1, . . . , p.  Besides, since the 
resulting Einstein space is non-trivial and K, is the conjugate curvature of ds', in the 
analysis (1) one, at least, of the Einstein spaces d d  is non-trivial and consequently 
n,24 for at least one value of the index a. Thus, we have proved the following. 

Theorem. The necessary and sufficient conditio4 that a V(K)-space is a non-trivial 
Einstein space are 

(i) Each metric d d  in the K-analysis (1) is that of an Einstein space of scalar curva- 
ture n,(n. - 1)K,, where K, is the conjugate curvature of dsz . 

(ii) One at least of the above Einstein spaces is non-trivial (i.e. not a space of constant 
curvature). 
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Since the dimension of a V(K)-space is 
P 

n = l +  C n, (6)  

we have, as an immediate consequence of the above theorem, that the dimension n, of 
a V(K)-space which is also an Einstein space is necessarily n25. This means that we 
need at least five dimensions in order to be able to distinguish between a space of 
constant curvature and an Einstein space which is also a V(K)-space. 

We specialize now to the &e K=O, where the corresponding spaces V(0) can be 
regarded as solutions of the vacuum field equations of general relativity in a spacetime 
of n > 5  dimensions. In this case the principalpart of the metric (l), dsi, is necessarily 
flat and the o(=) are linear combinations of the do[ 1,3]. Besides, a complete classification 
of the V(0)-spaces has been given by Kruckovic for any possible signature of the metrics 
involved 131. However, this classification scheme is not particularly convenient, since it 
treats (locally) decomposable spaces V(0) and the irreducible (non-decomposable) ones 
in the same way. Thus, removing the redundancies of the aforementioned classification 
scheme and concentrating only on non-decomposable metrics we conclude with two 
essentially distinct classes of V(0)-spaces the members of which are completely specified 
(up to a choice of the constants involved in the expressions of the o<=)) by integers. In 
particular we have 

a= I 

type I: l = p =  1 Ki=l  (nl>4) ( 7 4  

t ypeII: f=2p p a 1  &=O ( a= l ,  . . . , p  pal) (7b) 

where n,>4 for at least one value of a (1 <a<p).  Now the signature of the flat metric 
dd is uniquely prescrihed, being p ,  for any p 2 1. Thus, the explicit form of the metrics 
of type II depends only on the structure of the o(o) which is not essential for our 
discussion. Furthermore, the requirement of a Lorentz signature for the spacetime under 
consideration k e s  the values of p to p =  1, the additional metrics now being necessarily 
positive definite (n26). 

An immediate result of our analysis is that the solutions of the vacuum field equa- 
tions which admit a 0-analysis in dimension n= 5, can be uniquely prescribed from the 
solutions in dimension n=4,  which have a cosmological constant A =  K, = 1 and vice- 
versa. In exactly the same way the solutions which admit a 0-analysis in dimension 
n = 6 are uniquely prescribed by the 4-dimensional Einstein spaces for which R = K, = 
0 and vice versa. Clearly, the discriminating factor between the above cases is the 
conjugate curvature Kl which is different for each type of metric. In this sense it would 
be interesting to examine cases with KZO.  However, since there is no apparent physical 
meaning to the requirement of a K-analysis on the solutions of the Einstein field equa- 
tions the understanding of this particular constraint seem more adequate. In a certain 
sense, requiring that an Einstein space is a V(K)-space means that we endow our 
spacetime with additional symmetry and in particular with projective symmetry the 
maximal content of which is encountered in spaces of constant curvature. However, to 
accommodate this extra symmetry in four dimensions seems to be very stringent and 
an increase of the dimensionality of the background manifold is unavoidable. 

The spaces V(0) of the type 11, ( ~ 2 1 )  have another interesting property, namely 
they admit ubsolutely parallel vector fields. Hence the solutions of the vacuum field 
equations of this particular type satisfy the criterion of Kundt for plane gravitational 
waves [6]. Clearly, there is a hierarchy of such solutions which can be constructed 
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from the solutions in dimension n=4. In particular, for a solution of the type 11, this 
construction is uniquely prescribed in dimension n = 2 + 4p. In fact, there are no solutions 
of type II, in dimensions n < 2+4p, since if such a solution exists, one of the additional 
metrics should have a dimension n, <4, being necessarily flat. In this case this particular 
term of the K-analysis can be absorbed in the principal part of the metric leading into 
a (locally) decomposable space which contradicts the definition of a space of type 11,. 

Last, but not least, the process which generates the aforementioned hierarchy of 
solutions for anyp 2 1 can be regarded as a concrete realization of a relativistic extension 
scheme suggested by the author in a different context [SI. In fact spaces of type I are 
extensions of r,-type while spaces of,type IIp can be regarded as singular extensions 
of the B,-type of the aforementioned reference. 
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